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Abstract—A novel version of the Biginelli reaction using an unprotected aldose as a biorenewable aldehyde component and 2-
methyl-2-phenyl-1,3-oxathiolan-5-one as a mercaptoacetylating active methylene building block with urea/thiourea is reported.
The reaction is nanoclay-catalysed, expeditious and effected under solvent-free microwave irradiation conditions in a one-pot pro-
cedure to yield diastereoselectively, thiosugar-annulated multifunctionalized dihydropyrimidines via intramolecular domino cyclo-
condensation reactions of an isolable intermediate.
� 2007 Elsevier Ltd. All rights reserved.
In times where premium is put on speed, diversity and
efficiency in modern drug discovery processes,1,2 multi-
component reaction (MCR) strategies offer significant
advantages over conventional linear-type syntheses.3–7

One of the prominent MCRs is the venerable Biginelli
reaction first reported in 18938 that produces the
functionalized dihydropyrimidine (DHPM) scaffold
representing a heterocyclic system of remarkable phar-
macological efficiency. During the past decade, this long
neglected MCR has experienced a noticeable revival,
mainly due to the broad range of biological activities
of DHPMs. For example, orally active antihypertensive
agents9–11 or a1a adrenoceptor-selective antagonists.12

Similarly, monastrol and various marine natural prod-
ucts incorporating DHPM scaffolds are valuable new
leads for anticancer and AIDS therapy.13,14

In over 110 years of study of the Biginelli reaction, only
minor structural variations in its three building blocks
have been reported15,16 apart from a very recently
reported major structural variation where the urea com-
ponent was replaced by a guanidine system.17 However,
to the best of our knowledge, there has been no such
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major structural variation in the active methylene
building block, this could result in a novel version of
the Biginelli reaction for the synthesis of multifunction-
alized DHPMs. Herein, we report the first example of
the Biginelli reaction employing 2-methyl-2-phenyl-1,3-
oxathiolan-5-one, a recently reported18 mercaptoacetyl-
ating agent 1 (Fig. 1) as a novel structural variant of
the active methylene building block, with unprotected
aldoses as a biorenewable aldehyde component. This is
in accordance with ‘renewable resources’, a new and
rapidly developing concept in the environmental and
chemical sciences that concerns the wide use of bio-
renewable materials for industry.

We are aware of only a few reports dealing with the use
of aldoses in the protected form to give DHPMs in the
Biginelli reaction.19,20 However, our work is essentially
different from those reported as the use of unprotected
aldoses would allow one-pot syntheses of hitherto
unknown thiosugar-annulated DHPM scaffolds without
tedious protection-deprotection protocols. Aside from
the simple expectation that the presence of sugar
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Figure 1. Formation of the mecaptoacetyl transfer agent 2-methyl-2-
phenyl-1,3-oxathiolan-5-one 1.
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Table 1. Microwave-activated synthesis of 7, 4 and 5

Product Timea (min) Yieldb,c (%) cis:trans ratiod

7a 5 68 96:4
7i 7 79 98:2
4a 13 83 96:4
4b 10 76 97:3
4c 9 79 98:2
4d 12 85 96:4
4e 9 80 97:3
4f 10 82 96:4
5a 9 89 98:2
5b 11 78 97:3
5c 12 77 96:4
5d 10 84 96:4
5e 9 81 98:2
5f 11 80 97:3

a Microwave irradiation time at 90 �C.
b Yield of isolated and purified products.
c All compounds gave C, H and N analyses within ±0.34% and satis-

factory spectral (IR, 1H NMR, 13C NMR and FAB MS) data.
d As determined by 1H NMR spectroscopy.
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residues with free hydroxyl groups in the Biginelli prod-
ucts should increase the water solubility and bioavail-
ability, other interesting biological properties may
arise from the thiosugar-annulated DHPM system be-
cause thiosugars are potential targets for various carbo-
hydrate-based therapeutics.21 An additional reason for
which we have been spurred to use aldoses in the Bigi-
nelli reaction stems from the desire to achieve a degree
of internal asymmetric induction and thus obtain diaste-
reomerically pure sugar-annulated DHPMs as the bio-
logical activity of DHPMs is strictly dependent on the
absolute configuration at the C-4 stereocentre.15,22 The
present work is an outcome of our interest in devising
new one-pot, solvent-free cyclization procedures,18,23–26

especially involving stereocontrolled protocols.18,25

The strategy followed for the envisaged diastereoselec-
tive synthesis of thiosugar-annulated multifunctional-
ized dihydropyrimidines 4 and 5 consisted in
microwave (MW) irradiation of an intimate solvent-free
mixture of 2-methyl-2-phenyl-1,3-oxathiolan-5-one 1
with aldose 2, urea/thiourea 3 and the nanoclay, Mont-
morillonite K-10 (particle size 32.7 nm), at 90 �C for 9–
13 min in a CEM Discover Focussed Microwave Syn-
thesis System (Scheme 1). Isolation and purification by
recrystallisation from ethanol afforded 4 and 5 in 76–
89% yields with >95% diastereoselectivity (Table 1) in
favour of the cis isomer as determined by 1H NMR
spectroscopy.27 In the cis isomers 4 and 5, 4a-H is equa-
torial and 8a-H is axial as indicated by their coupling
constants (J4a,8a = 4.9 Hz, Jcis and J8,8a = 7.1 Hz, Jtrans).
The crude isolates were checked by 1H NMR for their
diastereomeric ratios to note any inadvertent alteration
of these ratios during subsequent purification. It was
found that the use of other mineral catalysts, viz. silica
gel, neutral or basic alumina, was far less effective,
resulting in either no reaction (in the case of basic alu-
mina) or relatively low yields (21–37%) of 4 and 5 (in
the case of silica gel and neutral alumina). The forma-
tion of 4 and 5 may be tentatively rationalized by the
conjugate addition of urea/thiourea 3 to adduct 6 gener-
ated in situ to afford intermediates, which undergo intra-
molecular domino cyclocondensation reactions to yield
4 and 5 (Scheme 2).
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Scheme 1. Synthesis of thiosugar-annulated dihydropyrimidines 4 and
5.
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Scheme 2. Tentative mechanism for the intramolecular domino
cyclocondensation reactions leading to dihydropyrimidines 4 and 5.
It is noteworthy that acetophenone, which was used to
activate mercaptoacetic acid to act as an efficient merca-
ptoacetylating active methylene building block 1, was
removed during the reaction yielding 4 and 5. These
conclusions are based on the observation that the repre-
sentative intermediate compounds, 7a (n = 3, X = O,
R = H) and 7i (n = 4, X = S, R = Ph), could be isolated
in 68–79% yields with >95% cis diastereoselectivity, and
that these could be converted into the corresponding
thiosugar-annulated dihydropyrimidines 4a and 5d,
respectively, in quantitative yields.28
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In summary, we have developed a novel version of the
Biginelli reaction using a mercaptoacetylating active
methylene building block and an unprotected aldose as
a biorenewable aldehyde component with urea/thiourea
for the expeditious diastereoselective synthesis of thio-
sugar-annulated multifunctionalized dihydropyrimidine
scaffolds of pharmacological potential. The reaction is
nanoclay-catalyzed and performed under solvent-free
MW irradiation conditions in a one-pot procedure.
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J20Ha;Hb ¼ 11:9 Hz, J10;20Ha ¼ 5:8 Hz, 2 0-Ha), 3.78 (dd,
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J4a,8a = 4.9 Hz, 4a-H). 13C NMR (DMSO-d6): d 25.9,
61.2, 66.8, 70.5, 73.3, 74.2, 79.8, 165.7, 167.1. MS (FAB)
m/z 279 (MH+). Anal. Calcd for C9H14N2O6S: C, 38.84;
H, 5.07; N, 10. Found: C, 38.59; H, 5.28; N, 9.79.
Compound 5d: Pale yellow powder, mp 103–105 �C. IR
(KBr) mmax 3340, 3321, 3010, 1683, 1599, 1585, 1451,
1102 cm�1. 1H NMR (400 MHz; DMSO-d6+D2O): d 3.31
(ddd, 1H, J10 ;6 ¼ 5:9 Hz, J 10;20Ha ¼ 5:5 Hz, J10;20Hb ¼
2:5 Hz, 1 0-H), 3.45 (dd, 1H, J6,7 = 8.9 Hz, J 106 ¼ 5:9 Hz,
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(MH+). Anal. Calcd for C15H18N2O5S2: C, 48.63; H, 4.90;
N, 7.56. Found: C, 48.93; H, 4.83; N, 7.73.

28. General procedure for the isolation of Michael adducts 7a
(n = 3, X = O, R = H) and 7i (n = 4, X = S, R = Ph) and
their conversion into the corresponding annulated prod-
ucts 4a and 5d: The procedure followed was the same as
described above for the synthesis of 4 and 5, except that
the duration of MW irradiation in this case was 5–7 min
instead of 9–13 min for 4 and 5. Adducts 7 were
recrystallized from ethanol to give a diastereomeric
mixture (>95:<5; in the crude products the ratio was
>93:<7, as determined by 1H NMR spectroscopy) which
was again recrystallized from ethanol to obtain an
analytical sample of 7a and 7i. Adducts 7a and 7i were
assigned the syn stereochemistry as their 1H NMR spectra
exhibited a smaller coupling constant JNCH,SCH = 4.5 Hz
than that of the minor (<4%) diastereomer (anti),
JNCH,SCH = 9.8 Hz.18,29–33 Finely powdered intermediate
compounds 7a and 7i were MW irradiated for 4–6 min in
the same way as described for the synthesis of 4 and 5 to
give the corresponding annulated products 4a and 5d,
quantitatively. Physical data of representative compounds:
Compound 7a: Pale yellow powder, mp 111–113 �C. IR
(KBr) mmax 3150, 3007, 1775, 1678, 1605, 1583, 1450 cm�1.
1H NMR (400 MHz; DMSO-d6+D2O): d 2.31 (s, 3H, Me),
4.03 (dd, 1H, J10;20 ¼ 6:8 Hz, J 10;NCH ¼ 5:5 Hz, 10-H), 4.17
(dd, 1H, J40Ha;Hb ¼ 10:2 Hz, J40Hb;30 ¼ 5:3 Hz, 4 0-Hb), 4.42
(dd, 1H, J 10;20 ¼ 6:8 Hz, J20 ;30 ¼ 4:2 Hz, 20-H), 4.63 (ddd,
1H, J3;40Hb ¼ 5:3 Hz, J3;40Ha ¼ 5:3 Hz, J20 ;30 ¼ 4:2 Hz, 3 0-
H), 4.85 (dd, 1H, J40Ha;Hb ¼ 10:2 Hz,J3;40Ha ¼ 5:3 Hz, 4 0-
Ha), 5.01 (dd, 1H, J 10;NCH ¼ 5:5 Hz, JSCH,NCH = 4.5 Hz,
NCH), 6.72 (d, 1H, JSCH,NCH = 4.5 Hz, SCH), 7.05–7.67
(m, 5Harom). 13C NMR (DMSO-d6): d 20.5, 35.1, 64.7,
65.2, 70.1, 71.1, 72.0, 74.5, 127.2, 128.3, 129.7, 130.5,
133.2, 167.2, 169.8. MS (FAB) m/z 387 (MH+). Anal.
Calcd for C16H22N2O7S: C, 49.73; H, 5.74; N, 7.25.
Found: C, 49.49; H, 5.53; N, 7.59. Compound 7i: Pale
yellow powder, mp 120–122 �C. IR (KBr) mmax 3147, 3011,
1781, 1598, 1577, 1449, 1099 cm�1. 1H NMR (400 MHz;
DMSO-d6+D2O): 2.29 (s, 3H, Me), 4.07 (dd, 1H,
J10 ;20 ¼ 6:5 Hz, J10;NCH ¼ 5:4 Hz, 1 0-H), 4.19 (dd, 1H,
J50Ha;Hb ¼ 10:1 Hz, J50Hb;40 ¼ 5:7 Hz, 5 0-Hb), 4.39 (dd,
1H, J10;20 ¼ 6:5 Hz, J20 ;30 ¼ 4:5 Hz, 20-H), 4.59 (dd, 1H,
J20 ;30 ¼ 4:5 Hz, J 30;40 ¼ 4:3 Hz, 30-H), 4.76 (ddd, 1H,
J40 ;50Ha ¼ 5:7 Hz, J40;50Hb ¼ 5:7 Hz, J 30;40 ¼ 4:3 Hz, 4 0-H),
4.88 (dd, 1H, J50Ha;Hb ¼ 10:1 Hz, J40;50Ha ¼ 5:7 Hz, 50-Ha),
5.03 (dd, 1H,J10;NCH ¼ 5:4 Hz, JSCH,NCH = 4.5 Hz, NCH),
6.69 (d, 1H, JSCH,NCH = 4.5 Hz, SCH), 7.11–8.01 (m,
10Harom). 13C NMR (DMSO-d6): d 20.1, 35.5, 64.5, 65.3,
69.8, 71.4, 72.5, 73.3, 74.3, 126.2, 127.1, 127.8, 128.6,
129.5, 130.2, 130.9, 132.0, 132.9, 133.6, 167.5, 191.8. MS
(FAB) m/z 509 (MH+). Anal. Calcd for C23H28N2O7S2: C,
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